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$ Fakultat fur Physik, Universitat Konstanz, D-7750 Konstanz 1, Federal Republic of 
Germany 
/I Department of Engineering Physics, Chubu University, Kasugai, Aichi 487, Japan 

Received 7 January 1988 

Abstract. We discuss variants of the Eden model for cluster growth, where growth sites 
have a finite lifetime T. Time is increased by l / G  when a growth site is transformed into 
a cluster site; G is the total number of growth sites present at that time. We find by Monte 
Carlo simulation that the growth process depends drastically on T. Below a critical lifetime 
T~ ( ~ ~ = 0 . 8 0  on the square lattice) the clusters are described by the fractal dimension of 
self-avoiding random walks, d,  =:, and the number of cluster sites s increases proportional 
to time 1. Above T,, we find Eden clusters with d,  = 2 and s = t 2 .  Finally, we extend our 
results to inhomogeneous media (percolation systems) where a fraction (1 - p )  of sites is 
not accessible to the growth process, and discuss the phase diagram. 

In the past few years, considerable attention has focused on cluster growth models. 
Cluster growth models have been used to describe a wide variety of spreading 
phenomena, ranging from the growth of epidemics and forest fires to signal propagation 
and the formation of diffusion fronts [ 1-15]; for reviews see [ 16, 171. The final structure 
of the growing cluster can be described by the fractal dimension dr, which gives the 
cluster mass s within a distance r from the seed, 

s - r d f .  (1) 

The growth sites are defined as that part of the cluster surface where the cluster can 
grow. The dynamics of the growth process can be characterised by the fractal dimension 
d, ,  which relates G, the mass of the growth sites inside radius r, to r 

G - r d g .  ( 2 )  

In (1) and (21, r is less than the radius of gyration. The dynamic exponent d ,  and the 
static exponent dF are independent of each other. If, for example, the next growth site 
to be tested is taken from a probability distribution P ( r )  - r-O where r is the distance 
of the growth site from the most recently added cluster site, then the growth exponent 
d, can change continuously with p [lo]. 

$ Present and permanent address: Institut fur Theoretische Physik, Universitat Hamburg, D-2000 Hamburg 
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The growth exponent d ,  determines the timescale of the growth process. To describe, 
e.g., the growth of tumours, epidemics or forest fires it is not realistic to assume that 
at each timestep one cluster site is added. Rather the timescale is determined by the 
total number of growth sites G, present at time t. In one timestep all growth sites are 
occupied in the average. The more growth sites that are present, the faster is the growth 
process. 

In previous works, Leath’s cluster growth method or variants of it have been used 
to describe epidemics and forest fires (see, e.g., [6, 121). In this method [3,4] the 
cluster grows by adding layers of constant path length (‘chemical’ distance [ 181) to 
the seed, one layer in one timestep. If there are no immune sites in the system where 
the cluster cannot grow, regular objects are grown which have the structure of the 
underlying lattice. 

Perhaps the simplest growth model for irregular objects is that due to Eden [ 11 in 
which empty neighbours of cluster sites, the growth sites, are occupied in random 
fashion. To describe the appropriate timescale associated with this process we assume 
that time is enhanced by 1/G, 

A t  = 1/G( t )  ( 3 )  

when a growth site is occupied. G ( t )  is the total number of growth sites present at 
time t. Combining ( 1 )  and (2) we have G ( t ) - M ( t ) d g l d f ,  where M ( t )  is the cluster 
mass (total number of sites) at time t. Hence we obtain from (3) 

M (  t )  - t d f / ( d f - d g )  t “ M  (4) 

where R ( t )  denotes the radius of gyration at time t, M ( t ) -  R ( t ) d f .  
If this kind of growth process is interpreted as the spreading of an epidemic or a 

forest fire, then the exponent aM = df/(df- d,) measures the increase of infected 
individuals or burned trees, while the exponent aR = l / (df-  d,) measures the increase 
of affected area. 

For the Eden model one has df = 2 and d ,  = 1 and thus M - t’, R - G - t .  If we 
allow for immune sites with concentration 1-p, then the exponents change at the 
critical concentration p c  of the underlying lattice: df = and d ,  = [lo]. Accordingly 
we have aM = E ,  aR =% and aG = g. Compared with the case p = 1 (no immune 
sites) the size of the infected area increases more strongly in this case, while the number 
of infected individuals increases slower with time. But note that these exponents are 
not universal, but can depend on the way in which the growth sites to be occupied 
are chosen [lo]. 

In the Eden model, an infected site can infect its as yet uninfected neighbours for 
an arbitrary long time. This assumption is not always satisfied. For example, in a 
forest fire a tree can burn out before setting its neighbouring trees on fire, or in an 
epidemic an infected individual can die before infecting the neighbouring individuals. 
In order to take account of these facts we will consider a finite lifetime T of growth 
sites. A growth site becomes inactive T timesteps after it has been generated. This 
means a ‘sick’ site can infect as yet ‘healthy’ sites only for a certain time T, i.e. if a 
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neighbour of a site A that was infected at time t ,  has not been infected by A up to 
time t ,  + T, it cannot be infected after that time by A anymore. This concept of a finite 
lifetime of growth sites has been introduced by Bunde et a1 [ 191 and elaborated further 
by Miyazima et a1 [20]. However, in these works time was counted differently: time 
was increased by one unit when the cluster size was increased by one site. It was 
found that, under this condition, df and d, changed considerably, d, = :, d, = 0, for all 
values of T and p 3 p c .  

In contrast, for the type of spreading phenomena considered here, the exponents 
depend drastically on T and p .  We find that below a critical lifetime T,( p )  the clusters 
are described by the fractal dimension of self-avoiding random walks, d, = !, d, = 0, 
while above T, (P)  we find Eden clusters with df=2, d,= 1 ( p > p c )  or percolation 
clusters with df = g, d, L- 5 ( p  = pc) .  

Figure 1 shows typical clusters for p = 1 and p = pc  for two values of lifetime T in 
each case. The clusters ( a )  for p = 1, T = 0.6 and ( c )  for p = p c ,  T = 1.5 look more like 
thick chains, while the cluster ( b )  for p = 1, T = 1.5 looks like a compact Eden cluster; 
the cluster ( d )  for p = p c ,  T = 5 is similar to large percolation clusters. To find the 
fractal dimension d, we have studied, by Monte Carlo simulations, as a function of 
the number of cluster sites, the mean square of the end-to-end distance (r’)  between 
the last added site and the seed at the origin of the square lattice. (r’)  scales as 

( r’) - S2/dr 

and therefore by measuring (r’)  as a function of cluster sites s we can determine d,. 
First let us consider the case of p = 1, when there are no immune sites in the lattice. 

Figure 2( a )  shows (r’)  as a function of s for T = 0.6, 0.8 and 1. For T = 0.6 the slope 
accepts the value 1.5, yielding df= :, while for T = 0.8 and 1 the slope is 1, yielding 

Figure 1. Typical clusters for p = 1 (no immune sites) and p =p, for two values of lifetime 
7 of growth sites: ( a )  p =  1, 7=0.6;  ( b )  p =  1, T =  1.5; ( c )  p = p c .  T =  1.5; ( d )  p=p, ,  T =  5 .  
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the fractal dimension of Eden clusters, df = 2, in two-dimensional systems. Figure 2( b )  
shows the number of growth sites G as a function of s. Again we observe a drastic 
change in the asymptotic behaviour between ~ = 0 . 6  and ~ = 0 . 8 .  For 7 2 0 . 8 ,  the 
asymptotic slopes are equal to 1 (straight lines) as expected for Eden clusters, while 
for T < 0.8 the number of growth sites tends to a constant and d ,  = 0, as expected for 
clusters belonging to the universality class of self-avoiding random walks [ 191. In 
order to find the critical lifetime T,, we have performed extensive computer simulations 
of clusters up to 20 000 sites. We have found T, = 0.80 * 0.02 for the square lattice. We 
expect that T ,  depends on details of the underlying lattice just as the critical concentra- 
tion does, while the exponents df and d ,  should not depend on minor structural details. 

For T < T ,  clusters belonging to the universality class of self-avoiding random walks 
are generated, while for T > T ,  Eden clusters are formed. Accordingly, the number of 
infected sites should scale differently below T,  and above 7,. Below T,, where dg= 0, 
we expect s - t, while above T, we expect s - t 2 .  Figure 2( c) confirms this expectation. 
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Finally, let us consider the probability that large clusters of size s can be generated. 
This 'survival' probability is given by the number of successfully generated clusters of 
s sites divided by the number of trials, N (  1). For T 2 0.8 practically all clusters survive, 
while for ~ < 0 . 8  we observe an exponential decay (figure 2 ( d ) )  

N ( s )  - exp(-s/so) 

where so tends to infinity when T ,  is approached. so is the mean size of a generated 
cluster. Since s - t for T < T,, so- to has the meaning of a mean lifetime for the 
epidemic process. For t =  to(^) there is a high probability that the epidemic stops or  
the forest fire is exhausted. For T >  T ,  the growth process can continue without 
limitation. 

Next we allow for immune sites, considering the case of p = p c  (at criticality). We 
assume that a fraction (1 - p )  of sites are immune sites, where the epidemic cannot 
spread. Below the critical concentration p c  of the lattice only finite clusters of infectable 
sites exist. At pc  there exists an infinite cluster of infectable sites. For p 2 pc  infinitely 
extended clusters can be formed. Figures 3(n, b )  show, for p = p , ,  the mean-square 
end-to-end distance (r')  and the number of growth sites G as a function of s for T 

between 0.75 and 4. For ~ = 4 ,  the slope of (r') is 1.05, in agreement with the fractal 
dimension dr=$ of percolation clusters for d = 2.  Accordingly, the slope of G(s)  is 
about 0.40, in agreement with the prediction d, = for Eden cluster growth in percolation 
[lo]. For 7 4  2 ,  the asymptotic slopes of (r')  are 1.5, corresponding to d r = $ .  Accord- 
ingly, G(s) approaches a constant for large s values. From this behaviour we expect 

for T = 4 and s - t for T 2, which we confirmed numerically. We have used 
computer simulations to calculate the critical lifetime for p = p c .  We have found 
T,( p , )  = 3.75 f 0.25 for the square lattice. 
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Figure 3. Plots of ( a )  ( r 2 )  and ( b )  G against s for p = pc and several values of 7, 

The phase diagram for the whole T - p  plane is shown in figure 4. Close to p = 1, 
T,( p )  seems to be linear in ( 1  - p ) ,  while close to p c  the slope of T , ( P )  seems to approach 
infinity. For p < p ,  only finite clusters can grow and epidemics or forest fires cannot 
spread. 

In summary, then, we have discussed a cluster growth model with finite lifetime 
of growth sites which can serve as a model for forest fires and epidemics. We have 
found dynamical phase transitions at critical lifetimes ~ , ( p )  which depend on the 
fraction ( 1  - p )  of immune sites in the system. For p z p c  we found clusters with fractal 
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Figure 4. Phase diagram of our growth model, where growth sites have a finite lifetime T, 
on a square lattice. There is a critical line separating a region where one finds Eden clusters 
and a region where the clusters belong to the universality class of self-avoiding random 
walks (SAW). For p < pc only finite clusters can be generated. At the critical concentration 
p c ,  percolation clusters are generated. 

dimensions d,=$ for T <  ~ , ( p ! ,  while for T >  ~ , ( p )  Eden clusters were formed. To 
describe the kinetic process we introduced the fractal dimension of the growth sites 
d,, which determines the timescale of the growth process. For T < T ,  we found d,  = 0, 
while for 7 > T~ we obtained d, = $ ( p  = p c )  and d, = 1 ( p > p , ) .  Our computer simula- 
tions were performed on the square lattice. For finite lifetime of growth sites, we 
expect dynamical phase transitions between clusters having the universality class of 
self-avoiding walks and Eden clusters also in higher dimensions. 

We thank H E Stanley for the kind hospitality at the Center for Polymer Studies where 
most of this work was performed. We are grateful to A Colburn for help with the 
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